بررسی مقایسه ای توان مدل های ترکیب گوسی و ماشین بردار پشتیبان در تشخیص و پیش بینی حباب قیمتی

Authors

حمیدرضا کردلویی

فرشاد تیموری

abstract

هدف این مقاله بسط و توسعه روش هایی مبتنی بر ساختار های شبکه ای و دارای پایه و مبنای ریاضی است که توانایی تشخیص حباب قیمت را در بورس اوراق بهادار تهران داشته باشد. در این مطالعه هدف ارائه مدلی برای تخمین حباب قیمت در بورس اوراق بهادار تهران است. به همین منظور به روش غربالگری نمونه ای به حجم 504 سهم شرکت پذیرفته شده در بورس اوراق بهادار تهران انتخاب گردید و اطالعات مربوط به قیمت و حجم معامالت آنها طی سال های 0830 تا 0830 گردآوری شد و سپس از طریق آزمون های تسلسل ، کشیدگی و آزمون وابستگی دیرش ، سهم های منتخب به دو دسته حباب دار و بدون تقسیم بندی شدند. در گام بعد با بررسی روند بازدهی تجمعی ، حجم معامالت سهم حباب دار و تاریخ شروع تشکیل حباب قیمت تعیین گردید و از طریق مدلهای ماشین بردار پشتیبان و مدل ترکیب گوسی و همچنین با استفاده از اطالعات مربوط به اندازه شرکت، شفافیت اطالعات، نسبت p/e و نقدشوندگی سهام یکسال قبل از تشکیل حباب قیمت آنها، مدلی برای پیش بینی حباب قیمت سهام شرکتها در بورس اوراق بهادار تهران طراحی گردید. در پایان نیز قدرت پیش بینی مدلها با استفاده از داده های گروه های آزمایش مورد بررسی قرار گرفت. با توجه به اینکه قدرت پیش بینی مدل ماشین بردار پشتیبان به دلیل خطای باال در تشخیص با توانایی صحت پیش بینی فقط معادل %30.45، و همچنین مدل ترکیب گوسی با کارایی برابر %33.55 ، به علت ضعف در کشف قیمت های حبابی بورس تهران، برای به کارگیری و استفاده با هدف تفکیک سهام حبابدار از بدون حبابها نامناسب شناخته شدند

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

بررسی مقایسه‌ای توان مدل‌های ترکیب گوسی و ماشین بردار پشتیبان در تشخیص و پیش‌بینی حباب قیمتی

هدف این مقاله بسط و توسعه روش هایی مبتنی بر ساختار های شبکه ای و دارای پایه و مبنای ریاضی است که توانایی تشخیص حباب قیمت را در بورس اوراق بهادار تهران داشته باشد. در این مطالعه هدف ارائه مدلی برای تخمین حباب قیمت در بورس اوراق بهادار تهران است. به همین منظور به روش غربالگری نمونه ای به حجم 504 سهم شرکت پذیرفته شده در بورس اوراق بهادار تهران انتخاب گردید و اطالعات مربوط به قیمت و حجم معامالت آنه...

full text

توانایی ماشین بردار پشتیبان در پیش بینی درماندگی مالی

درماندگی مالی پیش از ورشکستگی مالی رخ می‌دهد و پیش بینی موثر آن یک مسئله‌ی مهم و چالش برانگیز برای شرکت‌ها می‌باشد. تحقیق حاضر به پیش بینی درماندگی مالی در قالب مدل ماشین بردار پشتیبان و با استفاده از ترکیبات جریان نقد می‌پردازد. اهمیت ابزارهای داده کاوی، و توانایی این ابزارها در پیش بینی و طبقه بندی متغیرها، استفاده از آن‌ها را در مباحث مختلف مالی از جمله پیش بینی ورشکستگی، پیش بینی درماندگی م...

full text

کارایی مدل های ماشین بردار پشتیبان و برنامه ریزی بیان ژن در پیش بینی عملکرد محصول زعفران

با توجه به حساسیت عملکرد زعفران و تاثیرپذیری آن از پارامترهای اقلیمی و خاصیت غیرخطی توابع عملکرد گیاهی، در این تحقیق به پیش‌بینی عملکرد زعفران پرداخته شد. هدف از انجام این مطالعه، توانایی مدل شبیه‌سازی ماشین بردار پشتیبان(lssvm) و مدل برنامه‌ریزی بیان ژن(GenXproTools5,0 )در پیش‌بینی عملکرد زعفران براساس داده‌های هواشناسی(حداقل دما، حداکثر دما، بارش، تبخیر و رطوبت نسبی،عملکرد یکسال قبل) در مقیاس...

full text

استفاده از مدل های سری زمانی، شبکه عصبی و ماشین بردار پشتیبان جهت پیش بینی دبی ورودی به سد گرگان

پیش­بینی مقادیر جریان ورودی به سیستم منابع آب به­منظور آگاهی از شرایط آینده و برنامه­ریزی برای تخصیص بهینه منابع آب به بخش­های مختلف از قبیل شرب، کشاورزی و صنعتی امری ضروری در مدیریت منابع آب می­باشد. هدف از پژوهش حاضر پیش­بینی مقادیر دبی ماهانه ورودی به سد گرگان برای آینده بود. بدین منظور از داده­های هیدرومتری ایستگاه قزاقلی با دوره­ آماری 47 سال و سه مدل سری­زمانی، شبکه عصبی و ماشین بردار پشت...

full text

پیش بینی ژن‏ های بیماری با استفاده از دسته‏ بند تک‌کلاسی ماشین بردار پشتیبان

Abstract: In disease gene identification and classification, users are only interested in classifying one specific class, disease genes, without considering other classes (non-disease genes). This situation is referred to as one-class classification. Existing machine learning-based methods typically use known disease gene as positive training set and unknown genes as negative training set to bu...

full text

مقایسه دقت پیش بینی درماندگی مالی شرکت ها با روش ماشین بردار پشتیبان بازه ای و ماشین بردار پشتیبان استاندارد

معمولاً سرمایه گذاران و سایر گروه های ذی نفع، از اطلاعات مالی برای تصمیم گیری استفاده می کنند. از آنجا که اتخاذ تصمیم نادرست، منجر به درماندگی مالی و ورشکستگی شرکت ها شده و علاوه بر تحمیل هزینه های سنگین اقتصادی و اجتماعی، مشکلات جبران ناپذیر اقتصادی را به همراه دارد، لذا پیش بینی وضعیت مالی شرکت ها همواره مورد توجه سرمایه گذاران، اعتباردهندگان، دولت و پژوهشگران مالی بوده است. در مطالعات مالی می...

15 صفحه اول

My Resources

Save resource for easier access later


Journal title:
مهندسی مالی و مدیریت اوراق بهادار

Publisher: دانشگاه آزاد اسلامی واحد تهران مرکزی

ISSN 2251-9165

volume 6

issue 23 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023